インテルのみ表示可能 — GUID: mwh1410471224694
Ixiasoft
2.1. Netlist Viewer を使用するタイミング
2.2. Netlist Viewer による Quartus® Prime デザインフロー
2.3. RTL Viewer の概要
2.4. Technology Map Viewer の概要
2.5. Netlist Viewer のユーザー・インターフェイス
2.6. 回路図
2.7. ソース・デザイン・ファイルと他の Quartus® Primeウィンドウのクロスプローブ
2.8. 他の Quartus® Primeウィンドウからの Netlist Viewer のクロス・プロービング
2.9. タイミングパスの表示
2.10. デザイン・ネットリストの最適化の文書改訂履歴
4.2.3.1. ガイドライン: ソースコードの最適化
4.2.3.2. ガイドライン: スピードではなくエリア最適化に向けた合成
4.2.3.3. ガイドライン: マルチプレクサーの再構築
4.2.3.4. ガイドライン:Balanced 設定または Area 設定での WYSIWYG プリミティブ 再合成の実行
4.2.3.5. ガイドライン: レジスターパッキングの使用
4.2.3.6. ガイドライン:フッター制約の削除
4.2.3.7. ガイドライン: 合成中の階層のフラット化
4.2.3.8. ガイドライン:メモリーブロックのターゲット変更
4.2.3.9. ガイドライン: エリア削減のための物理合成オプションの使用
4.2.3.10. ガイドライン: DSP ブロックのターゲット変更およびバランス化
4.2.3.11. ガイドライン:より大きなデバイスの使用
4.2.3.12. ガイドライン: グローバル信号の輻輳の低減
4.2.3.13. ガイドライン: パイプライン情報レポート
5.5.1. Design Assistant のルール違反の訂正
5.5.2. Fast Forward Timing Closure Recommendations の実装
5.5.3. タイミングパスの詳細の確認
5.5.4. オプションのフィッター設定
5.5.5. バック・アノテーションが最適化された割り当て
5.5.6. Design Space Explorer II を使用した最適化設定
5.5.7. Exploration Dashboard を使用したコンパイル結果の集約と比較
5.5.8. I/O タイミングの最適化手法
5.5.9. レジスター間のタイミング最適化に向けた設定
5.5.10. メタスタビリティーの解析と最適化手法
5.5.3.1. Report Timing
5.5.3.2. ロジック深度レポート
5.5.3.3. 近隣パスレポート
5.5.3.4. レジスター分布レポート
5.5.3.5. Report Route Net of Interest レポート
5.5.3.6. リタイミング制約レポート
5.5.3.7. パイプライン情報レポート
5.5.3.8. CDC Viewer レポート
5.5.3.9. タイミング・クロージャーの推奨事項
5.5.3.10. グローバル・ネットワーク・バッファー
5.5.3.11. リセットとグローバル・ネットワーク
5.5.3.12. 設定が疑わしい場合
5.5.3.13. オートシフト・レジスターの交換
5.5.3.14. クロッキング・アーキテクチャー
5.5.9.1. ソースコードの最適化
5.5.9.2. レジスター間のタイミング改善
5.5.9.3. 物理合成最適化
5.5.9.4. Power Optimization During Synthesis を Normal Compilation へ設定する
5.5.9.5. エリアではなくパフォーマンスに向けた合成の最適化
5.5.9.6. 合成中の階層のフラット化
5.5.9.7. シンセシス・エフォートをHighへ設定する
5.5.9.8. 加算器ツリー形式の変更
5.5.9.9. ファンアウトを制御するためのレジスターの複製
5.5.9.10. シフトレジスターの推論の防止
5.5.9.11. 合成ツール内で使用可能な他の合成オプションを使用する
5.5.9.12. フィッターシード
5.5.9.13. 最大ルータタイミング最適化レベルを設定する
5.5.9.14. レジスター間のタイミング解析
6.2.3.1. Chip Planner でアーキテクチャー固有のデザイン情報を表示する
6.2.3.2. Chip Planner で利用可能なクロック・ネットワークを表示する
6.2.3.3. Chip Planner でクロックセクター使用率を表示する
6.2.3.4. Chip Planner による配線の輻輳の視覚化
6.2.3.5. Chip Planner で I/O バンクを表示する
6.2.3.6. Chip Planner で高速シリアル・インターフェイス (HSSI) を表示する
6.2.3.7. Chip Planner でソースノードおよびデスティネーション・ノードを表示する
6.2.3.8. Chip Planner でファンインおよびファンアウトを表示する
6.2.3.9. Chip Planner で直近のファンインおよびファンアウトを表示する
6.2.3.10. Chip Planner で選択したコンテンツを表示する
6.2.3.11. Chip Planner でデバイスリソースの位置および使用率を表示する
6.2.3.12. Chip Planner でクロスプロービングによるモジュールの配置を表示する
7.4.1. ECO コマンドのクイック・リファレンス
7.4.2. make_connection
7.4.3. remove_connection
7.4.4. modify_lutmask
7.4.5. adjust_pll_refclk
7.4.6. modify_io_slew_rate
7.4.7. modify_io_current_strength
7.4.8. modify_io_delay_chain
7.4.9. create_new_node
7.4.10. remove_node
7.4.11. place_node
7.4.12. unplace_node
7.4.13. create_wirelut
インテルのみ表示可能 — GUID: mwh1410471224694
Ixiasoft
5.5.9.2. レジスター間のタイミング改善
タイミングマージン (スラック) を改善するため、またはレジスター間のタイミングを改善するためのオプションと設定の選択は、デザイン内の障害のあるパスによって異なります。 パフォーマンス要件に最も近い結果を得るためには、次のテクニックを適用して各ステップの後にデザインをコンパイルしてください。
- タイミング割り当てが完全で正しいことを確認します。詳しくは、デザイン最適化の概要 の章に記載された初期コンパイル: 必要な設定を参照してください。
- 初回コンパイルからのすべての Design Assistant ルール違反および警告メッセージを確認し、無視されたタイミング・アサインメントがないかチェックしてください。Design Assistant は、無効なタイミング制約を特定し、修正するのに役立ちます。
- ネットリストの合成最適化オプションを適用します。
- スピードの最適化を図るには、以下の合成オプションを適用します。
- エリアではなくスピードへの合成の最適化
- 合成中の階層のフラット化
- シンセシス・エフォートを High へ設定する
- シフトレジスターの推論の防止
- 合成ツール内で利用可能な他の合成オプションを使用する
- パフォーマンスを最適化するには、Advanced Physical Optimization をオンにします。
- 異なるフィッターシードを試します。小さな負のスラックによる問題のあるパスがほとんどない場合、フィッターシード・ノイズで制約を満たすフィットがあるかを確認するために異なるシードを試します。
注: 多くのクリティカル・パスに問題がある、あるいはパスに重篤な問題がある場合はこのステップを手順を省略します。
- 配置を制御するには、Logic Lock アサインメントを作成します。
- タイミング要件を満たすまでかなりの開きがあるデザインのエリアを修正するには、デザイン・ソース・コードを変更します。
- ロケーション・アサインメントを作成するか、最後の手段としてデザインをバック・アノテーションして手動で配置を行います。
Design Space Explorer II (DSE) を使用して、異なる設定でいくつかのコンパイルを実行するプロセスを自動化することができます。これらの手法を適用してもパフォーマンスの要件が達成できない場合は、別にデザイン・ソース・コードの技術は、性能要件を達成しない場合、追加の設計ソースコードの修正が必要になるかもしれません。