インテルのみ表示可能 — GUID: ojp1587486632402
Ixiasoft
2.1. Netlist Viewer を使用するタイミング
2.2. Netlist Viewer による Quartus® Prime デザインフロー
2.3. RTL Viewer の概要
2.4. Technology Map Viewer の概要
2.5. Netlist Viewer のユーザー・インターフェイス
2.6. 回路図
2.7. ソース・デザイン・ファイルと他の Quartus® Primeウィンドウのクロスプローブ
2.8. 他の Quartus® Primeウィンドウからの Netlist Viewer のクロス・プロービング
2.9. タイミングパスの表示
2.10. デザイン・ネットリストの最適化の文書改訂履歴
4.2.3.1. ガイドライン: ソースコードの最適化
4.2.3.2. ガイドライン: スピードではなくエリア最適化に向けた合成
4.2.3.3. ガイドライン: マルチプレクサーの再構築
4.2.3.4. ガイドライン:Balanced 設定または Area 設定での WYSIWYG プリミティブ 再合成の実行
4.2.3.5. ガイドライン: レジスターパッキングの使用
4.2.3.6. ガイドライン:フッター制約の削除
4.2.3.7. ガイドライン: 合成中の階層のフラット化
4.2.3.8. ガイドライン:メモリーブロックのターゲット変更
4.2.3.9. ガイドライン: エリア削減のための物理合成オプションの使用
4.2.3.10. ガイドライン: DSP ブロックのターゲット変更およびバランス化
4.2.3.11. ガイドライン:より大きなデバイスの使用
4.2.3.12. ガイドライン: グローバル信号の輻輳の低減
4.2.3.13. ガイドライン: パイプライン情報レポート
5.5.1. Design Assistant のルール違反の訂正
5.5.2. Fast Forward Timing Closure Recommendations の実装
5.5.3. タイミングパスの詳細の確認
5.5.4. オプションのフィッター設定
5.5.5. バック・アノテーションが最適化された割り当て
5.5.6. Design Space Explorer II を使用した最適化設定
5.5.7. Exploration Dashboard を使用したコンパイル結果の集約と比較
5.5.8. I/O タイミングの最適化手法
5.5.9. レジスター間のタイミング最適化に向けた設定
5.5.10. メタスタビリティーの解析と最適化手法
5.5.3.1. Report Timing
5.5.3.2. ロジック深度レポート
5.5.3.3. 近隣パスレポート
5.5.3.4. レジスター分布レポート
5.5.3.5. Report Route Net of Interest レポート
5.5.3.6. リタイミング制約レポート
5.5.3.7. パイプライン情報レポート
5.5.3.8. CDC Viewer レポート
5.5.3.9. タイミング・クロージャーの推奨事項
5.5.3.10. グローバル・ネットワーク・バッファー
5.5.3.11. リセットとグローバル・ネットワーク
5.5.3.12. 設定が疑わしい場合
5.5.3.13. オートシフト・レジスターの交換
5.5.3.14. クロッキング・アーキテクチャー
5.5.9.1. ソースコードの最適化
5.5.9.2. レジスター間のタイミング改善
5.5.9.3. 物理合成最適化
5.5.9.4. Power Optimization During Synthesis を Normal Compilation へ設定する
5.5.9.5. エリアではなくパフォーマンスに向けた合成の最適化
5.5.9.6. 合成中の階層のフラット化
5.5.9.7. シンセシス・エフォートをHighへ設定する
5.5.9.8. 加算器ツリー形式の変更
5.5.9.9. ファンアウトを制御するためのレジスターの複製
5.5.9.10. シフトレジスターの推論の防止
5.5.9.11. 合成ツール内で使用可能な他の合成オプションを使用する
5.5.9.12. フィッターシード
5.5.9.13. 最大ルータタイミング最適化レベルを設定する
5.5.9.14. レジスター間のタイミング解析
6.2.3.1. Chip Planner でアーキテクチャー固有のデザイン情報を表示する
6.2.3.2. Chip Planner で利用可能なクロック・ネットワークを表示する
6.2.3.3. Chip Planner でクロックセクター使用率を表示する
6.2.3.4. Chip Planner による配線の輻輳の視覚化
6.2.3.5. Chip Planner で I/O バンクを表示する
6.2.3.6. Chip Planner で高速シリアル・インターフェイス (HSSI) を表示する
6.2.3.7. Chip Planner でソースノードおよびデスティネーション・ノードを表示する
6.2.3.8. Chip Planner でファンインおよびファンアウトを表示する
6.2.3.9. Chip Planner で直近のファンインおよびファンアウトを表示する
6.2.3.10. Chip Planner で選択したコンテンツを表示する
6.2.3.11. Chip Planner でデバイスリソースの位置および使用率を表示する
6.2.3.12. Chip Planner でクロスプロービングによるモジュールの配置を表示する
7.4.1. ECO コマンドのクイック・リファレンス
7.4.2. make_connection
7.4.3. remove_connection
7.4.4. modify_lutmask
7.4.5. adjust_pll_refclk
7.4.6. modify_io_slew_rate
7.4.7. modify_io_current_strength
7.4.8. modify_io_delay_chain
7.4.9. create_new_node
7.4.10. remove_node
7.4.11. place_node
説明
用途
引数
7.4.12. unplace_node
7.4.13. create_wirelut
インテルのみ表示可能 — GUID: ojp1587486632402
Ixiasoft
7.4.11. place_node
説明
ECO フィッターが選択した位置に指定したノードを配置します。オプションで、location 引数を指定して、特定のデバイス領域の位置を割り当てることができます。このコマンドは、フィッターによって既に配置されているノードに実行することもできます。
place_node は、新しく追加された、または既存のフリップフロップの配置もサポートします。place_node は、Hyper-Register の位置をサポートしていません。
用途
次の例は、3 つの配置例を示しています。node1 の場合、ECO フィッターが配置位置を決定します。node2 の場合、コマンドは正確な LAB 位置制約を指定します。node3 の場合、コマンドは配置領域制約を指定します。
place_node -name node1 # let ECO Fitter decide placement place_node -name node2 -location FF_X20_Y60_N17 # place node at specific location place_node -name node3 -location “X10 Y10 X20 Y20” # place node in region place_node -name my_ff -location “X10 Y10 X10 Y10” # place flip-flop in region
引数
- name
- ノード名
- location
- デバイス領域座標 (X1 Y1 X10 Y10) (X1 Y1) (FF_X20_Y60_N17)